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Keepaway is a simpler subtask of robot soccer where three ‘keepers’

attempt to keep possession of the ball while a ‘taker’ tries to steal it from

them. This is a less complex task than full robot soccer, and lends itself

well as a testbed for multi-agent systems. This thesis does a comprehensive

evaluation of various learning methods using neuroevolution with Enforced

Sub-Populations (ESP) with the robocup soccer simulator. Both single and

multi-component ESP are evaluated using various learning methods on homo-

geneous and heterogeneous teams of agents. In particular, the effectiveness

of modularity and task decomposition for evolving keepaway teams is evalu-

ated. It is shown that in the robocup soccer simulator, homogeneous agents

controlled by monolithic networks perform the best. More complex learning

approaches like layered learning, concurrent layered learning and co-evolution

decrease the performance as does making the agents heterogeneous. The re-

sults are also compared with previous results in the keepaway domain.
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Chapter 1

Introduction

Robot soccer keepaway is a sub-component of robocup soccer that is

not as complex as the full robot soccer, and provides an excellent testbed

for machine learning in multi-agent systems[19]. The skills used in keepaway

are very relevant to robot soccer, and hence it provides a good balance of

manageable complexity and similarity to the full robot soccer game. The

“Robocup Soccer Simulation League” uses the robocup soccer simulator[4].

Learning complex behavior, especially with minimal human input, is a

challenging problem. Neuroevolution provides a method to learn this behavior.

Neuroevolution as a method of training neural networks has been successfully

used to solve large complex domains [26], [16], [5], [6]. Although computation-

ally more intensive than back-propagation, it is less prone to stagnation and

more efficient in searching complex landscapes. One of the more successful

neuroevolution techniques is neuroevolution with Enforced Sub-Populations

(ESP) ([7], [8]). ESP evolves sub-populations of neurons for each hidden node

and allows neurons to specialize for the position they are in.

Complex tasks also require keeping track of several factors in the envi-

ronment, such as multiple opponents, and executing several different behaviors
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at once and in succession. Therefore a good way to encode control architec-

tures would be to use modularity e.g. multiple components within a network,

and training based on subtasks. In the past, several such methods have been

proposed, and in this thesis, they are tested in a uniform, interesting platform

of robocup soccer simulator.

One of the major approaches in this study is task decomposition. At

a high level, many complex problems have a natural solution – split the large

complex task into smaller manageable parts. Solving the parts may be easier

than solving the entire problem at once and these smaller solutions then can

be combined to give a solution for the entire problem. Task-decomposition is

precisely this approach, where the domain is split up into smaller sub-tasks

and later combined.

The performance of task decomposition with both ESP and multi-

component ESP, and learning methodologies including layered learning, con-

current layered learning and co-evolution in the robot soccer domain is the pri-

mary focus of study. This thesis does a comprehensive study of various variants

of the ESP neuroevolution algorithm used in various learning methodologies

in the robot soccer keepaway task, using the robocup soccer simulator.

Part of this work has been inspired by the work done by Whiteson

et al.[24]. Whiteson et al. studied the performance of various approaches,

including layered learning and co-evolution, to solve the robot soccer domain

using the SoccerBots simulator. Some of these experiments are recreated for

the robocup soccer simulator. This study also includes comparison with multi-
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component ESP and using heterogeneous agents.

It is found that using the robocup soccer simulator, the monolithic

network does surprisingly well, in contrast to some earlier results. A possible

explanation for this intriguing result is that the robocup simulator is a simpler

domain in that kicking behaviour is separate and doesn’t require learning

complex movement strategies. The ball and the keepers are also equal in size,

thus requiring less manoeuvring. So the agent is able to learn other tasks well.

Chapter 2 briefly describes other related studies. The approach is de-

scribed in detail in Chapter 3 followed by a listing of the results in 4. Chapter

5 discusses the results, and possible extensions of this work, and Chapter 6

concludes the thesis.
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Chapter 2

Background and Related Work

In this chapter, a brief description of previous work keepaway, neuroevo-

lution, task-decomposition and multi-agent systems is given.The keepaway do-

main, task decomposition, and neuroevolution with ESP and multi-component

ESP is also described in detail.

2.1 Keepaway

Keepaway is a sub-task of robot soccer that consists usually of three

“keepers” and one or two “takers”. The keepers are tasked with keeping

possession of the ball, while the taker tries to snatch the ball from the keepers.

The game is played within a rectangular (or circular) area of fixed dimensions.

The game ends when either the taker gets the ball, or the ball goes outside the

enclosing area. Both the keepers and the takers are allowed to move outside

the enclosing area. For each pass completed, the keepers receive 1 point. In

other studies of keepaway [18], [13], the time the ball remains in possession of

the keeper is used as the fitness function rather than the number of passes.

But in this thesis, for the purposes of comparison with the results in Whiteson

et al., the number of completed passes is the fitness function. An illustration
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of the keepaway setup is shown in Figure 3.1.

Each agent has access to visual information, received from the server,

of the global positions and velocities of all the other agents, both teammates

and opponents, the global position and velocity of the ball, and the position of

the center of the keepaway rectangle. Each agent also has two types of actions

it can perform – dash (move) with a particular power and angle, or kick the

ball with a particular power and direction.

Whiteson et al. [24] studied the performance of various methods using

layered learning. Layered learning is a mechanism of learning the separate

subtask first, and combining them for the overall task. Whiteson et al. com-

bined the sub-task networks with both hand coded decision trees that select

the output of the appropriate network based on the outcomes of specific ques-

tions, and selection networks that select the output of one of the sub-networks.

They also introduced one extension of layered learning – concurrent layered

learning, that uses pre-trained networks, but evolves them simultaneously in

the overall task. Co-evolution is also studied, wherein the entire network is co-

evolved. All these methods are compared to a monolithic network, and a hand

written script. When a decision tree was used, they found that co-evolution

performs the best, followed by concurrent layered learning. Both of these per-

formed much better than a hand-written script. The monolithic networks and

layered learning with a decision tree did not perform as well as a hand-written

script. When a switch network was used, concurrent layered learning per-

formed much better than a hand-written script. While co-evolution, layered
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learning and monolithic networks with a switch network performed well below

a handwritten script.

While Whiteson et al. [24] implemented their experiments using the

SoccerBots simulator, the implementation of keepaway used in this thesis is

based on the keepaway client and trainer written by Gregory Kuhlmann an

Peter Stone [21], along with the robocup soccer server [4] version 15.1.0. Un-

like the robocup soccer simulator, the only action available to an agent in the

SoccerBots simulator is to move with a specific magnitude and direction of

velocity. Kicking is done by colliding head-on with the ball at the right veloc-

ity. The size of the players is relatively large compared to both the playing

field and the ball. All the learning methods that used a switch network in

Whiteson et al. – layered learning, concurrent layered learning, co-evolution,

are evaluated. In addition to that, multi-component ESP and heterogeneous

agents are evaluated in this thesis.

Multi-agent reinforcement learning using the robocup soccer simulator

was studied in [17]. In this study, lower level behaviors were handcoded and

the combining decision tree was learned. In [13], an evolutionary algorithm

was used to learn a strategy for a single player in the keepaway domain.

In [18], reinforcement learning, in particular SMDP Sarsa(λ) is used to

learn behaviors for the keepaway domain. In [20] the use of keepaway techiques

to full soccer was explored.

Both heterogeneous agents – agents controlled by separate evolving
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neural networks, and homogeneous agents – agents controlled by the same

evolving neural network were tested in this domain. In this thesis, it is ob-

served that homogeneous agents are able to perform significantly better than

heterogeneous agents. Bryant and Miikkulainen [2] explored the ability of ho-

mogeneous agents to evolve heterogeneous roles using ESP, and showed that

agents evolve adaptive behavior and division of tasks to solve the domain.

Waibel et al.[23] show that depending on the level of cooperation re-

quired in the task, homogeneous or heterogeneous agents perform better. In

particular, heterogeneous agents perform very well in tasks that don’t require

much cooperation. Homogeneous agents perform significantly better in tasks

that require a lot of cooperation. Similar results are shown by Campbell and

Wu [3]. The results obtained in this thesis also verify these results – ho-

mogeneous teams of keepers significantly outperform heterogeneous teams of

keepers.

2.2 Neuroevolution

Neuroevolution is a machine learning technique where networks are

encoded as a gene using and evolved by evaluating the network in the given

task, and selectively breeding the fittest individuals. The fittest individuals

reproduce through crossover with or without mutation. In this thesis, the

Enforced Sub-Population (ESP) neuroevolution algorithm ([7], [8]), and its

extension, multi-component ESP [27] is used.

ESP was first proposed in [7] and [8], and has been successfully used in
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many domains. In [8], ESP was used to evolve a controller for a finless rocket.

Multi-agent ESP has had success in various other domains, notably predator-

prey. In [27], multi-agent ESP (Enforced Sup-Populations) was used to co-

evolve multiple networks for each set of inputs for a predator-prey task, and

it was shown that this co-evolved network performs better than a monolithic

network when there were multiple predators and prey involved. This work was

extended in [14] to domains with different types of prey, and with individual

and shared fitness, where cooperation between the agents was seen to evolve.

In ESP each hidden node in the network being evolved is associated

with a subpopulation of neurons, as illustrated in 2.1. Each of these neurons

is a genome encoding the input and output weights of the neuron. In each it-

eration, a random neuron from each subpopulation is selected and used as the

hidden neuron at that position. The network is then evaluated, and the fitness

at the end of the evaluation is equally shared between all the neurons compris-

ing the network. In each generation, a ‘trial’ consists of multiple combinations

of hidden neurons being chosen from the subpopulation and evaluated. At the

end of these evaluations, the neurons within each subpopulation are sorted

based on the average fitness the neuron got in the evaluations it participated

in, and each neuron in the top 25% is recombined with a higher ranking neuron

using 1-point crossover. The resulting children replace the bottom half of the

population. Mutation also occurs during this phase. A small fraction of the

neurons in each subpopulation are recombined with the neuron from the same

hidden node in the generation best network.
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Figure 2.1: In ESP each hidden node is associated with a subpopulation of
neurons. In each trial, a random neuron from a subpopulation is selected to
occupy the hidden node at that position.

This sort of evolution allows each subpopulation to specialize for the

particular node it belongs to, and allow the neurons to cooperate effectively.

When performance begins to stagnate, delta-coding is applied in order to pre-

vent premature convergence. Delta coding seeds the population with a cauchy

perturbation of the strongest neuron in the population. Since the perturbation

is cauchy, most neurons are very similar to the strongest neuron, although a

few are radically different. This diversifies the population

Multi-component ESP [27] is an extension of standard ESP, where

a separate network component is assigned to each agent in the domain, and

the output of these sub-networks are combined using a combiner network. The

sub-networks and the combiner networks are all evolved using ESP.

Yong and Miikkulainen [27] used multi-agent ESP (Enforced Sup-Populations)

to co-evolve multiple networks for each set of inputs for a predator-prey task,

and it was shown that this co-evolved network performs better than a mono-

lithic network when there were multiple predators and prey involved. This
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work was extended by Rajagopalan et al. [14] to domains with different types

of prey, and with individual and shared fitness, where cooperation between

the agents was seen to evolve.

Kohl and Miikkulainen [11] discuss the performance of unrestricted

Neuroevolution of Augmenting Topologies (NEAT) as compared to other mod-

ifications of NEAT such as RBF-NEAT and Cascade-NEAT[10] and point out

that while plain NEAT performs well in domains requiring reactive control, it

doesn’t perform well if fractured domains. RBF-NEAT which biases searches

and Cascade-NEAT which constrains the searches were developed[10] to work

well in such domains, and were evaluated both in the keepaway domain and

in half-field soccer.

2.3 Task decomposition

Task decomposition is a general method of splitting up a complex task

into separate specialised sub-tasks that are easier to learn. A separate sub-

task network is evolved to solve each of these simpler subtasks. These sub-task

networks are later used, along with a selection network (or some combination

mechanism) to solve the overall task. Chapter 3 explains the specific decompo-

sition of tasks used in the keepaway domain. Task decomposition is illustrated

in 2.2. The selection network chooses between the outputs of the subtask net-

works. In general the decomposition is done manually. The nature and exact

mechanism of the decomposition can affect how well the network learns the

overall task. The general idea is that by learning the smaller tasks separately,
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Figure 2.2: An illustration of task decomposition with a selection network. The
sub-task networks learn the specialized sub-tasks, and the selection network
chooses between the outputs of these sub-tasks in the overall task.

each network has to only contend with a simpler domain compared the overall

complex task, thus learning the task in manageable pieces.

Lee [12] studied the task of finding a box in an enclosure and pushing

it towards a light source by a robot, decomposing it into separate subtasks of

finding the box, positioning the robot, and pushing the box in a straight line.

Separate controller circuits were evolved in simulation for each of the sub-tasks,

one at a time, using Genetic Programming (GP). Then higher level controller

circuits were then evolved to select the appropriate sub-task controller based

on the sensory inputs. Such a decomposition of the overall task into separate

subtasks performed better than evolving a monolithic controller circuit. The

current paper follows a similar approach but evolves neural networks using

NEAT instead of controller circuits.

Jain et al. [9] used task decomposition to learn strategies for the

predator-prey hunter domain. Neuro-evolution of augmenting topologies (NEAT)

11



was used as the neuroevolution algorithm and it was shown that as the com-

plexity of the task increases, task decomposition performs better.

The performance of task decomposition in the keepaway domain is also

evaluated in this thesis. The keepaway task is split into specialized subtasks,

which are learned and later combined with a switch network for the overall

task.
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Chapter 3

Approach

In this chapter, the setup and approach used for the experiments are

described in detail, along with the values of various parameters used. Section

3.1 describes the task decomposition done in keepaway and the overall task.

Section 3.2 describes the various learning methods used.

3.1 Domain

The keepaway domain with three keepers and one taker is used in this

study. The implementation of keepaway used is based on the keepaway client

and trainer written by Kuhlmann and Stone [21], along with the robocup

soccer server [4] version 15.1.0.

Each agent had access to visual information, received from the server,

of the global positions and velocities of all the other agents, both teammates

and opponents, the global position and velocity of the ball, and the position

of the center of the keepaway rectangle. The agent had 360◦ vision and can

see the position of all the keepers, takers and the ball at all times.

Each agent had two types of actions it can perform – dash (move)

with a particular power and angle, or kick the ball with a particular power
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and direction. For both dash and kick, the power can be between −100 and

100 and the angle can be between −180 and 180 (values specified in the server

configuration). The ball can be kicked only when it is within a certain distance

from the player. The soccer server updates the state of the playing field based

on the actions taken by all the players at each time step, the overall update

being a cumulative effect of all agents’ actions. Although in the robocup soccer

simulator dash and turn are separate actions, in this implementation, it is used

as an atomic action at a higher abstraction. The agent decides to move in a

specific direction with a specific power, and this is sent to the robocup server

over two consecutive cycles as a turn action and a dash action.

3.1.1 Overall keepaway task

Figure 3.1: Configuration of agents at the beginning of the keepaway episode.
Three keepers occupy three of the four corners of the keepaway rectangle with
the ball in front of a randomly chosen keeper. The taker starts at the center
of the field.

The setup of the overall keepaway task is shown in Figure 3.1. At the
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beginning of the episode, the keepers are positioned at three random corners of

the keepaway rectangle, with the ball in front of a random keeper. The taker

is positioned at the center of the field. The goal of the keepers is to complete

as many passes as possible among themselves. The episode ends when the ball

goes outside the keepaway rectangle, or is intercepted by the taker.

The network inputs for each keeper for the overall task were: the rela-

tive position and angle of the ball – Ballr and Ballθ, the distance of the ball

from the center of the field – Centerr, the relative positions and angles of the

other keepers and the taker from the agent – Keeper 1r, Keeper 1θ, Keeper 2r,

Keeper 2θ, Takerr, Takerθ. The outputs of the network were Dash power and

angle, and Kick power and angle. If the agent is within kickable distance from

the ball, the kick power and angle outputs is used to kick the ball. Otherwise,

the dash power and angle outputs are used. When a selection network is used,

the sub-task network selected decides the action the agent takes, and it is not

required to kick the ball when it is within kickable distance.

To compare the performance of the network to the one in [24] in the

SoccerBots domain, one set of experiments with a network with only two

outputs was also conducted. This network’s two outputs were interpreted

either as kick power and angle or dash power and angle depending on whether

the agent was within kickable distance of the ball or not.

The network architectures that were evaluated for both the overall task

and the sub-task networks (Section 3.1) was one of the following:
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• Single-component: A “single-component” network has one input layer,

one hidden layer and one output layer.

• Multi-component: A “multi-component” network has separate input,

hidden and output layers that correspond to each agent on the playing

field – one for each keeper, taker and the ball. A single ‘combiner’

network combines the outputs from these separate components into one

output. Each keeper on the field has a separate multi-component network

for control.

ESP was used to evolve all the networks. All networks were evaluated

for 100 generations, with each neuron in a given subpopulation used in an

average of 10 evaluation cycles, each evaluation cycle lasting for 10 episodes

of the task/sub-task.

The single-component and multi-component networks used for the over-

all task are shown in Figures 3.2(a) and 3.2(b) respectively. In the case of the

single-component network, five hidden neurons were used, and in the case of

the multi-component network, two hidden neurons each was used for the sepa-

rate components, and five hidden neurons were used for the combiner network.

When training a network for this task, for all cases, Incremental evo-

lution [1], [6] was used. In incremental evolution the taker starts off by taking

an action only 10% of the time (taking no action for the other 90% of the time).

Each time the keepers complete an average of 2 passes in an evaluation cycle,

the probability of the taker taking an action was increased by 5%. In effect,

16



(a) Single-component network for the
overall task

(b) Multi-component network for the
overall task

Figure 3.2: Single and multi-component network for the overall task. The
multi-component network includes separate input, hidden and output layers
for each agent, which are then combined.

the taker starts off at 10% speed of the keepers’, and every time the mentioned

criterion is satisfied, the taker’s speed increases by 5% of the keepers’ speed.

3.1.2 Sub-tasks

Separate specialized sub-tasks were defined and networks learned in

these specialized subtasks were used for the overall task for layered learning

and concurrent layered learning, described in Section 3.2. The definition of

the sub-tasks in this study is very similar to the ones in Whiteson et al. [24]

modified for the robocup soccer domain.

The three defined subtasks were:
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• Intercept: In this subtask, the game consists on only one keeper and the

ball. The keeper starts off in one randomly chosen corner of the keepaway

rectangle and the ball is positioned at the center of the field. The ball is

then propelled at the keeper at a random angle with a random velocity.

The goal of the keeper is to intercept the ball before the ball leaves the

keepaway rectangle or the episode times out, and the episode ends when

this happens. The timeout is for cases where the initial velocity of the

ball is too small for it to leave the keepaway rectangle, and is set at 100

cycles of simulation. An illustration of the starting setup in this subtask

is shown in Figure 3.3

Figure 3.3: Configuration of agents at the beginning of the Intercept sub-task
episode. The ball is propelled towards the keeper with a random magnitude
and direction of velocity from the center.

The network inputs in this sub-task were the relative position and angle

of the ball – Ballr and Ballθ, and the relative magnitude and direction of

the velocity of the ball – Ball V elocityr and Ball V elocityθ. The outputs
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were the dash power and angle.

The single-component network used for this sub-task is shown in Figure

3.4. Since this sub-task has only one other agent, the ball, a multi-

component network is the same as a single-component network. The

network had two hidden neurons.

Figure 3.4: Single-component network for the Intercept sub-task

• Pass: In this subtask, there are three keepers and one taker. One keeper

is positioned at the center with the ball in front of it. This keeper can

only kick the ball, and cannot move around. The other two keepers are

positioned at the corners on the other side. A taker is also positioned

on the other side but closer to the ball. An illustration of this setup is

shown in Figure 3.5. The goal of the keeper at the center is to kick the

ball to one of the other two keepers without the ball being intercepted

by the taker. While the keeper at the center evolves a network to achieve

this goal, the other two keepers and the taker use a fixed network learned

in the Intercept subtask.
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Figure 3.5: Configuration of agents at the beginning of the Pass sub-task
episode. The keeper at the center learns to kick the ball to the other two
keepers at the opposite corners controlled by the fixed Intercept behaviour,
while the taker tries to steal the ball.

The network inputs for the keeper at the center in this subtask were:

the relative position and angle of the ball – Ballr and Ballθ, the relative

positions and angles of the other two keepers and the taker from the

keeper – Keeper 1r, Keeper 1θ, Keeper 2r, Keeper 2θ, Takerr, Takerθ.

The outputs of the network were kick power and direction.

The single-component and multi-component networks used for this sub-

task are shown in Figures 3.6(a) and 3.6(b). The network had two hidden

neurons.

• Get Open: In this subtask, the keepers, takers and the ball are posi-

tioned exactly as in the Pass subtask. The keeper at the center uses a

fixed network learned from the Intercept subtask, while the other two

keepers evolve a network to achieve the goal. The goal for the other two
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(a) Single-component network for the
Pass sub-task

(b) Multi-component network for the
Pass sub-task

keepers in this subtask is to get to a position where they can successfully

intercept the ball from first keeper. The taker uses a fixed network from

the Intercept subtask to intercept the ball.

The network inputs for the evolving keepers in this subtask were: the

relative position and angle of the ball – Ballr and Ballθ, the distance of

the ball from the center of the field – Centerr, the relative position and

angle of the taker from the agent – Takerr, Takerθ. The outputs of the

network were dash power and direction.

The single-component and multi-component networks used for this sub-

task are shown in Figures 3.6(c) and 3.6(d). The network had two hidden

neurons.
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(c) Single-component network for the
Get Open sub-task

(d) Multi-component network for the
Get Open sub-task

3.2 Learning

Four different learning methods were used to evolve the networks for the

overall keepaway task. In all these methods, both single and multi-component

networks were evaluated.

• Monolithic learning: In this method, a single network was evolved

directly in the overall task domain.

• Layered Learning: In layered learning [22], the networks for the sub-

tasks are first learned in their specialized domains. Then a selection

network is evolved in the overall task. This selection network selects

between the outputs of the fixed sub-task networks based on the inputs

it gets. The final action taken by the agent is based on the network

chosen by the selection network. For example, if the Intercept sub-task

network is chosen by the selection network, then in that cycle, the action

performed would be to intercept the ball based on the outputs of the In-
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tercept network. The single-component and multi-component selection

networks used are shown in Figures 3.6(e) and 3.6(f). The outputs of

the selection network chooses one of the sub-task networks.

(e) Single-component selection net-
work for the overall task

(f) Multi-component selection net-
work for the overall task

Figure 3.6: The selection network for the overall task selects between the
outputs of the three sub-task networks

• Co-evolution: This is similar to layered learning except that pre-

trained sub-task networks are not used. Both the sub-task networks and

the selection network are evolved from scratch in the overall domain.

This is similar to the co-evolution approach described in [24].

• Concurrent layered learning: The subtask networks are first trained

in their specialized task domains. The fittest networks from these sub-

task networks are chosen, and used to seed the neuron sub-populations
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of new sub-task networks using delta-coding [25]. These newly seeded

sub-task networks are used while evolving the selection network in the

overall domain like in layered learning. But these sub-task networks are

also allowed to evolve simultaneously, to allow them to tune themselves in

the overall task. The concurrent layered learning approach first described

in [24] is the one used here.

3.3 Type of agents

Two types of agents were evaluated – homogeneous and heterogeneous.

• All the homogeneous keepers shared the same evolving network in all

the tasks.

• Each heterogeneous keeper evolved a separate network, in isolation

from the other two keepers.

One of the advantages of having homogeneous agents is that, since they

all share the same network, each network is evaluated three times more than

for heterogeneous agents. Homogeneous agents can also share the strategies

they have learned. The heterogeneous agents have the advantage of being able

to evolve specialized behavior for their position which is not easily possible for

homogeneous agents. Comparisons between the performance of homogeneous

and heterogeneous agents was also done to evaluate which of these factors

affect the final performance and to what degree.
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Chapter 4

Results

The experiments were run for both homogeneous and heterogeneous

agents. Layered learning, co-evolution and concurrent layered learning were

evaluated, with and without using multi-component ESP. The results are de-

scribed in the next few sections. The fitness shown is the average fitness in

each episode. For all the experiments, the results shown are an average of 10

runs, with standard error indicated in the graphs.

4.1 Layered Learning

The performance of monolithic network and layered learning using se-

lection network is shown in 4.1. The monolithic network performs better than

layered learning. The monolithic network reaches average fitness of 5 per

episode, while layered learning levels out at average fitness of 2 per episode.

Experiments were also run by modifying the outputs of the monolithic

network to emulate kicking behavior in the Soccerbots domain as described in

Section 3.1. The comparison between the monolithic network with this output

configuration with layered is shown in Figure 4.2. The performance of the

monolithic network does not change much with this configuration.
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Figure 4.1: Comparison between performance of monolithic network and lay-
ered learning.

Figure 4.2: Comparison between performance of monolithic network and lay-
ered learning with modified kicking behavior.

26



4.2 Multi-component ESP

Multi-component ESP was evaluated for both the monolithic network

and the selection network in layered learning. Figure 4.3 shows the com-

parison between the single and multi-component monolithic networks. The

multi-component network performs slightly better than the single-component

network.

Figure 4.3: Comparison between performance of single and multi component
monolithic networks.

In Figure 4.4 comparisons between the single and multi-component

selection networks is shown. The multi-component network performs much

better than the non-multi-component network, although its performance is

still not as high as that of the monolithic network.
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Figure 4.4: Comparison between performance of single and multi component
selection networks, and monolithic network.

4.3 Co-evolution

Both the single and multi-component ESP selection networks were run

with co-evolution. These networks use untrained sub-task networks, and all

the networks – the sub-task networks and the selection network are evolved

simultaneously. The results of using co-evolution is shown in Figure 4.5. Co-

evolution increases the performance of the selection network significantly.

Co-evolution was also evaluated by replacing all the networks, both

sub-task and selection, with networks that use multi-component ESP. The

comparison between co-evolution with and without multi-component ESP is

shown in Figure 4.6. Although for the monolithic network and layered learning,

introduction of multi-component ESP improved the performance, in the case
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Figure 4.5: Comparison between performance of (single-component) selection
network with and without co-evolution.

of co-evolution, the difference in performance is not significant.

4.4 Concurrent Layered learning

The selection networks were run with concurrent layered learning as

described in Section 3.2. These networks use trained sub-task networks that

continue to evolve during the overall task. The results of using concurrent

layered learning is shown in Figure 4.7. Using concurrent layered learning

significantly improves the performance as compared to layered learning.

Concurrent layered learning was also evaluated by replacing all the net-

works, both sub-task and selection, with networks that use multi-component

ESP. The comparison between concurrent layered learning with and without
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Figure 4.6: Comparison between performance of single and multi-component
networks with co-evolution.

Figure 4.7: Comparison between performance of (single-component) selection
network with and without concurrent layered learning.
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multi-component ESP is shown in Figure 4.8. As for co-evolution, multi-

component ESP does not significantly improve performance of the network.

Figure 4.8: Comparison between performance of single and multi-component
networks with concurrent layered learning.

The comparison between co-evolution and concurrent layered learning

is shown in Figure 4.9. Concurrent layered learning performs much better

at later generations than co-evolution. Both the methods still perform worse

than the monolithic network.

4.5 Heterogeneous agents

Heterogeneous keepers that evolved separate networks in isolation from

the other keepers, were also evaluated in the task of keepaway. All the pre-

ceding experiments were conducted using heterogeneous agents. It was found
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Figure 4.9: Comparison between performance of (single-component) selection
network with co-evolution and concurrent layered learning.

that the ordering of the performance of various methods was the same as for

homogeneous agents, but the absolute fitness achieved by the homogeneous

agents was twice as much as heterogenous agents. Shown in Figures 4.10 and

4.11 are the performances of both the monolithic network and layered learning

approaches for heterogeneous agents compared to homogeneous agents.
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Figure 4.10: Comparison between performance of monolithic network between
heterogeneous and homogeneous agents.

Figure 4.11: Comparison between performance of layered learning between
heterogeneous and homogeneous agents.
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Chapter 5

Discussion and Future Work

The results described in Chapter 4 are analysed in Section 5.1. Then

a brief description of possible extensions of this work in the future is given in

Section 5.2.

5.1 Discussion

The goal of this thesis was to perform a comprehensive study of vari-

ous learning methodologies in the keepaway domain. As seen in the results in

the previous sections, the monolithic network performs the best among all the

methods evaluated. Multi-component ESP slightly improves the performance

of the monolithic network, but all the other methods, including layered learn-

ing, co-evolution and concurrent layered learning does not perform as well as

the monolithic network.

The separation of the move and kick action in the robocup soccer sim-

ulator makes it simple enough for the monolithic network to perform really

well. Any extra machinery makes it harder for the agent to learn a successful

strategy. Layered learning, co-evolution and concurrent layered learning also

depend strongly on how the task decomposition is done, and the particular
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means of combination. It is possible that a different set of sub-tasks could

lead to better performance for these methods.

The fact that the monolithic network performs the best is also surpris-

ing compared to the results in Whiteson et al. [24]. Whiteson et al. used

the SoccerBots simulator to evaluate the various methods. In Whiteson et

al., concurrent layered learning performed the best, whereas the monolithic

network performed the worst. The SoccerBots simulator is different from the

robocup soccer simulator in that the players are much larger than the ball,

and they have no explicit way to kick the ball. The players can only move

around and for kicking the ball, collide with it with the right magnitude and

direction of velocity. The player also has to position its front, which has a

‘paddle’ for kicking, to align the ball. So the player has to approach the ball

from an appropriate angle and velocity to make a successful kick. This makes

the task much harder compared to the robocup soccer simulator, where the

player can kick the ball in an arbitrary direction and velocity if it is within

kicking distance of the ball.

In the experiment with the modified kicking behavior, the player used

the same two outputs for both dash and kicking. Although this seems similar

to the behavior in SoccerBots, in the robocup soccer simulator, the player can

come near the ball, and instantaneously change its outputs to kick the ball in

the right direction, even if it is not facing the ball. In the SoccerBots simulator,

this is not possible since the player has to approach the ball in a specific ‘wind

up’ motion. This introduces an ‘inertia’ for the player and also explains why
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the experiment with the modified kicking behavior did not significantly change

the performance in the robocup soccer simulator.

Although the simulator used in Whiteson et al. [24] is significantly

different from the one used in this theses, it is interesting to note that in

absolute terms, the monolithic network in the robocup soccer simulator, which

achieves an average fitness of 5.3 per episode, performs almost as well as the

best method, concurrent layered learning with a switch network, in Whiteson

et al., which achieves an average fitness of 5.5 per episode (or 55 per evaluation

cycle).

In previous work by Padmini and Aditya, [15], [14], multi-component

ESP was found to perform significantly better than single-component ESP. In

keepaway, for layered learning, the multi-component ESP network performs

significantly better. For the monolithic network, the difference is less signif-

icant. But overall, in all the experiments, multi-component ESP performs

better by varying degrees.

In this thesis also multi-component ESP performs better than single-

component ESP, but not to the degree see in the work done by Padmini and

Aditya [15], [14]. This can be attributed to that fact that for harder domains,

multi-component ESP makes a bigger difference, while for domains where the

task is simpler, the extra complexity in the network does not compensate as

much in performance.

Homogeneous agents perform much better than heterogeneous agents
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in the keepaway domain. The ability to share strategies among themselves

outweighs the ability to evolve specialized positional behavior when it comes

to the final performance. The fact that homogeneous networks are also eval-

uated a greater number of times means that the evaluation is more thorough,

which aids in the evolution of better networks. The combination of these two

factors explains why the difference is performance between the homogeneous

and heterogeneous networks is so significant.

5.2 Future Work

There are multiple avenues for extensions of this work. Broadly, these

can be classified as (1) changing the definition of subtasks, (2) changing the

type of networks itself, and (3) applying the approach to more complex do-

mains. Apart from these three broad categories, automating task decompo-

sition is another possible extension. These extensions are described briefly

below.

The performance of all the learning methods depend heavily on the way

the sub-tasks are decomposed. Evaluation of other ways of decomposing the

task, and providing a more structured way to decompose subtasks would be

an interesting extension to this study. For instance, if the fitness measure is

possession time of the ball, then one of the sub-tasks could be how well the

player can ‘dribble’ i.e. move around close to the ball without kicking it too

far.

Recurrent neural networks could be used to give the agents a sort of
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‘memory’, which would enable it to devise more complex strategies. These

methods could also be applied to the more complex domain of full robot soccer.

It would be interesting to see if the same performance ordering of the methods

would hold when the task becomes much more complex.

Developing a method to partially or completely automate the task de-

composition would help reduce the human input that is required right now

to specify the sub-tasks. It would also help us understand which tasks are

amenable to task decomposition and how decomposition contributes to com-

plex behavior. This automation could take place based on observations of

repeating sets of similar actions, or positions of the players.

It would also be interesting to compare the results in this thesis to

previous work where the time the ball is in possession of the keeper is used

as a fitness measure rather than the number of passes. Since the keepers are

not required to kick the ball all the time, different strategies might evolve.

Similarly, forcing the keeper to kick in the direction it is facing might make

the task more complex, and similar to that in the Soccerbots simulator. It

would be interesting to see if this makes the results more similar to the ones

in Whiteson et al.
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Chapter 6

Conclusion

A comprehensive study of various learning algorithms using both ESP

and multi-component ESP were studied. Their performance was evaluated in

the robot soccer keepaway domain using the robocup soccer simulator. It was

found that a monolithic network performs the best compared more complex

learning techniques. This is attributed to the fact that the dynamics of the

simulator and the task itself is simple enough for a monolithic network to

learn well, without the necessity for other complex machinery. The results

were also compared with previous work in the keepaway domain, in particular

Whiteson et al. [24]. It was found that although in absolute terms, the

performances were comparable, the ordering of performances of the various

methods were different. This was due to the differences in dynamics of the

SoccerBots simulator used. If the task is relatively unconstrained, a monolithic

network work seems to work quite well. But in the case of highly constrained

tasks, the search for the solution network is more difficult. In that case,

the task decomposition approach or multi-component network might perform

better.
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